WWW.PROGRAMMA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Учебные и рабочие программы
 

«В настоящее время создан целый ряд компьютерных программ, реализующих полевой метод моделирования, которые достаточно точно описывают поля скоростей, температур и концентраций на ...»

В настоящее время создан целый ряд компьютерных программ, реализующих полевой метод моделирования, которые

достаточно точно описывают поля скоростей, температур и концентраций на начальной стадии пожара.

2. Вероятностные математические модели

Вероятностная модель - модель, которая в отличие от детерминированной модели содержит случайные элементы. Таким

образом, при задании на входе модели некоторой совокупности значений, на ее выходе могут получаться различающиеся между

собой результаты в зависимости от действия случайного фактора.

С помощью вероятностного моделирования и программ вероятностного анализа безопасности возможно подсчитать вероятность риска пожаров с учетом человеческого фактора, определять приоритетные направления уменьшения величины риска пожаров. Представляется возможным учесть все важные причины пожаров и факторы, которые оказывают содействие распространению или усложняют тушение пожара, и, путем создания и изучения модели, выявлять дефициты пожарной безопасности по аналогии с моделированием безопасности сложных систем.

3. Смешанные (детерминированные - вероятностные) математические модели В последнее время в безопасности жизнедеятельности все шире стали применять детерминировано-вероятностные модели катастроф, а также комплексный физико-математический метод исследования катастроф с использованием современной компьютерной техники и оригинальных лабораторных установок. Детерминированно-вероятностная модель прогноза пожаров учитывает сценарий совместного появления антропогенной нагрузки и грозовой активности, метеорологические условия.

4. Имитационные математические модели Имитационное моделирование представляет интерес в исследовании сложных систем при априорной неопределенности. В модели может быть задано вероятное протекание пожара, вероятные законы распределения и распространения тепловых потоков, имитируется процесс работы конструкций.

Моделирование пожара в помещении и оценка его воздействия на строительные конструкции состоит из следующих основных этапов:

-анализ конструктивно-планировочных характеристик помещения;

-определение вида, количества и размещения пожарной нагрузки;

-определение вида возможного пожара и его базовых параметров;

-выбор метода расчета и проведение расчета, оценка вероятностных характеристик пожара;

-анализ огнестойкости конструкций, определение эквивалентной продолжительности стандартного испытания.

Заключение Математическое моделирование позволяет спрогнозировать динамику пожара в помещениях зданий различного назначения, а следовательно позволяет вывести исследование пожарной опасности объектов на качественно новый этап развития, обеспечить переход от сравнительных методов к прогнозным, учитывающим условия эксплуатации объекта. Это можно считать ещё одним шагом на пути решения проблемы обеспечения пожарной безопасности здания или сооружения в целом, и строительных конструкций в частности.

Литература

1. Клуб студентов «Технарь». Конспекты по математическим моделям [Электронный курс] URL: http://www.c-stud.ru (дата обращения 10.03.2015)

2. Расчет необходимого времени эвакуации людей из помещений при пожаре: Рекомендации. - М.: ВНИИПО МВД СССР, 1989. - 22 с.

3. Методические рекомендации «Применение полевого метода математического моделирования пожара в помещениях.

4. ГОСТ 12.1.004-91* Пожарная безопасность. Общие требования.

5. СНиП 21-01-97* Пожарная безопасность зданий и сооружений.

References

1. Club of students "Technician". Abstracts on mathematical models [An electronic course] of URL: http://www.c-stud.ru (date of the address 10.03.2015)

2. Calculation of necessary time of evacuation of people from rooms at the fire: Recommendations. - M.: VNIIPO MVD USSR, 1989. s.

3. Methodical recommendations "Application of a field method of mathematical modeling of the fire in rooms.

4. GOST 12.1.004-91 * Fire safety. General requirements.

5. SNiP 21-01-97 * Fire safety of buildings and constructions.

–  –  –

Студент, доктор технических наук, Советник РААСН,3Доктор технических наук, Советник РААСН, Ивановский государственный политехнический университет

СИЛИКАТНЫЙ КИРПИЧ В УСЛОВИЯХ ВЫСОКОТЕМПЕРАТУРНЫХ ВОЗДЕЙСТВИЙ

Аннотация В статье рассмотрено – проведение и анализ эксперимента по определению минимальной температуры нагрева силикатного кирпича, чтобы после резкого охлаждения в воде нарушалась его целостность и в теле кирпича появились трещины. Потребность в глубоком исследовании влияния высокотемпературных воздействиях на конструкции из силикатного кирпича вызвана необходимостью в более точном прогнозировании состояния конструкций из силикатного кирпича после пожара, а так же в прогнозировании дальнейшей эксплуатации конструкций.

Ключевые слова: силикатный кирпич, пожар, термостойкость.

–  –  –

В настоящее время значительную часть жилого фонда и гражданских зданий составляют здания со стенами из мелкоразмерных элементов. В частности, широко распространена кладка из силикатного кирпича. Из него изготавливают несущие и ограждающие конструкции.

Силикатный кирпич обладает несомненными достоинствами: высокой прочностью на сжатие, меньшей себестоимостью по сравнению с другими мелкоразмерными строительными материалами, однако, он разрушается под длительным действием влаги, ветра, низкой температуры (морозостойкость) и высокой температуры (термостойкость).

Пожары – явление довольно частое, поэтому проблема влияния высоких температур на конструкции из силикатного кирпича весьма актуальна.

По техническим требованиям для силикатного кирпича максима-льная температура применения не должна превышать 550.

Зачастую ликвидировать пожар в кратчайший срок не представляется возможным – это зависит как от объективных так и субъективных факторов. Во время пожаров температура в помещении может превышать 1000–1500 и зависит от пожарной нагрузки, диффузии, теплообмена, длительности воздействия огня, теплопроводности, конвективных процессов и т. д. Таким образом, при пожарах велика вероятность превышения нормативной температуры применения силикатного кирпича. При длительном воздействии высоких температур на кирпичную кладку происходит дегидратация гидросиликата кальция и гидрата окиси кальция, которые связывают зёрна песка, происходит разрушение кирпича в виде волосяных трещин. Эти трещины появляются как поперёк кладки, так и вдоль неё и могут распространяться довольно глубоко в тело кладки. В результате пересечения трещин происходит дробление кирпичной кладки на лещадки, вследствие этого может происходить частичное обрушение кладки в зонах её повреждения. А если это происходит с несущей стеной, работающей под нагрузкой от вышележащей кирпичной кладки и перекрытий, ситуация усугубляется ещё больше. В этом случае образовавшиеся трещинным могут раскрываться и будут носить уже силовой характер. Как показали исследования [1], если силовые трещины проходят через четыре (и даже три) ряда кирпичной кладки из силикатного кирпича, то это указывает на её аварийное состояние. Кроме этого возникает опасность разрушения кирпичной кладки во время тушения пожара. В настоящее время для тушения пожара в основном используют воду в силу её доступности и дешевизны. Температура воды гораздо ниже чем температура в горящем помещении и тела самой кладки. При резком охлаждении поверхности кирпича температурные деформации приводят к появлению трещин и разрушение кладки может произойти при температуре ниже нормативной температуры применения силикатного кирпича. Чем выше температура кладки, тем на большую глубину происходит разрушение слоя, то есть уменьшается площадь опирания несущих железобетонных конструкций, что может привести к их обрушению.

На данном этапе исследования был поставлен и проведён эксперимент по определению минимальной температуры, до которой надо нагреть кирпич, чтобы после его резкого охлаждения в воде нарушалась его целостность и в теле кирпича появились трещины. Для эксперимента было отобрано шесть партий кирпича: партия 1 - силикатный кирпич, изъятый из тела кладки, партии 2-6- свежеизготовленный полнотелый силикатный кирпич, отобранный на заводе ООО «Ивановский силикатный завод» с поддонов.

Согласно ГОСТ 379-95 была определена марка кирпича каждой партии: партия 1-М75, партия 2-М100, партия 3-М125, партия 4-М175, партия 5-М150, партия 6-М75.

Особенностью испытания явилась замена растворных швов прокладкой из микропористой резины (см. рис. 1). Адекватность такой замены доказана в [1].

Рис. 1 – Замена растворных швов прокладкой из микропористой резины

Последовательность проведения эксперимента на термостойкость:

- место проведения эксперимента было оборудовано в соответствии с техникой безопасности;

- перед проведением эксперимента образцы каждой партии были тщательно осмотрены для выявления трещин и дефектов.

Обнаруженные дефекты и трещины были соответствующим образом помечены на образцах и фиксировались в протоколе испытаний;

- после проверки и установки нужной температуры на шкале муфельной печи образец помещался в печь, время проведённое кирпичом в печи, замерялось секундомером и заносилось в протокол испытаний;

- после того как температура в печи достигала установленного значения, производился замер температуры поверхности кирпича, а затем образец погружался в ёмкость с водой, которая имела начальную температуру 20;

- после того, как температура погруженного в воду кирпича становилась равной температуре воды в ёмкости, производилась её фиксирование в протоколе;

- после охлаждения образца вновь производился его осмотр на наличие трещин, которые фиксировались соответствующим образом на поверхности кирпича;

- производилась корректировка температуры на шкале печи в большую сторону и в печь помещался следующий образец;

- для определения остаточной несущей способности образцов, подвергшихся термическим воздействиям, было проведено их повторное испытание на прочность;

- в ходе эксперимента температура в печи повышалась ступенями с шагом 100 (температура термостойкости образцов уточнялась методом последовательных приближений);

- кирпичи всех партий прошли испытания, и полученные данные по эксперименту были занесены в таблицу протокола (см. табл. 1) и представлены в виде графика (см. рис. 2).

–  –  –

Кривая ТГА отражает изменение массы образца подвергающегося испытанию. Кривая ДТГА отражает скорость изменения массы. Кривая ДТА определяет эндо и экзо эффекты (определение концентрации реагирующего компонента смеси или энтальпии химических и физических превращений).

Анализ результатов полученных экспериментальных данных позволяет сделать следующие выводы:

1. Чем выше марка полнотелого кирпича, тем он более термоустойчив.

2. Декларируемая нормативными документами [2], максимальная температура применения силикатного кирпича составляет 550, что никак не связано со сроками эксплуатации и справедливо лишь для кирпича марки М125.

3. После термических воздействий марка кирпича снижается в среднем на 20-30%. Чем выше марка, тем меньше потери прочности.

4. Согласно дериватограмме при 300 образец теряет 10-12% веса, при 400 теряет 14-16%, при 500 17-19%, при 600 20%. После 600 образец теряет в весе на каждые 10 1,5%. При достижении 960 наступает полная деструкция и вес образца составляет 10% от первоначального. Вода полностью была удалена из образца при температуре 170-175 и её доля составила 17первоначального веса. Структурные изменения в силикате начинаются при температуре 418-420.

Дальнейшие детальные исследования нацелены на проведение натурного эксперимента для выявления характера поведения силикатного кирпича в теле кладки при пожаре и после него.

Литература

1. Гнедина Л. Ю. Экспериментальное определение прочностных характеристик различных видов кирпича и кирпичной кладки при центральном сжатии // Строит. материалы.- 2007 - №12. С 18-19.

2. ГОСТ 379-2007 Кирпич и камни силикатные. Технические условия.

3. СП 15.13330.2012 Каменные и армокаменные конструкции.

References

1. Gnedina L. Yu. Experimental definition of strength characteristics of different types of a brick and bricklaying at the central compression//Builds. materials. - 2007 - №12. S 18-19.

2. GOST 379-2007 Brick and stones silicate. Specifications.

3. Joint venture 15.13330.2012 Stone and armokamenny designs.

Альсова О.К.1, Ларькова Е.В.2

Кандидат технических наук, доцент; 2магистрант, Новосибирский государственный технический университет

МЕТОДИКА СТАТИСТИЧЕСКОГО АНАЛИЗА СТРУКТУРЫ И СЕЗОННОСТИ ИНФЕКЦИОННОЙ

ЗАБОЛЕВАЕМОСТИ ПО ГОРОДАМ РОССИИ

Аннотация В статье предложена методика статистического анализа структуры и сезонности инфекционной заболеваемости на примере города Барнаул. Исходные данные для исследования взяты из банка данных (БнД) CliWaDIn (Climate.Water.Diseases.Infections./Климат.Вода.Болезни.Инфекции), в котором представлены ежедневные сведения об инфекционной заболеваемости по 6-ти городам Зауралья России. Методика основана на использовании методов описательной статистики, графического анализа данных, построении гармонических моделей и может быть применена для более углубленного анализа инфекционной заболеваемости по различным группам населения, а также, для описания инфекционной заболеваемости в других городах России.

Ключевые слова: инфекционная заболеваемость, структура, сезонность, гармоническая модель

–  –  –

Инфекционная заболеваемость (ИнЗ) – один из основных медико-статистических показателей состояния здоровья населения.

Анализ этого показателя за ряд лет позволяет сделать выводы о частоте возникновения и динамике заболеваемости, а также об эффективности комплекса социально-гигиенических и лечебных мероприятий, направленных на её снижение.

В работе исследуется структура и сезонность ИнЗ на примере города Барнаула. В качестве исходных были выбраны данные из БнД CliWaDIn [2-3], описывающие заболеваемость в Барнауле за 2008-2011 гг. Случаи инфекционных заболеваний зафиксированы ежедневно по дате регистрации, закодированы согласно Международной Классификации Болезней (МКБ-10, ICD-10). В БнД представлены заболевания следующих диагностических групп: А00-B99 (Certain infectious and parasitic diseases).

Всего за период с 2008 по 2011 гг. в городе Барнаул зарегистрировано 19787 случая инфекционных заболеваний. Прежде всего, чтобы учесть различия в количестве постоянных жителей города по годам и проанализировать динамику изменения ИнЗ, была выполнена нормировка данных с учетом демографических показателей в расчете на 100 тыс. населения: число случаев заболеваний за год делилось на среднегодовую численность населения по данным Росстата и умножалось на 100000 (относительная заболеваемость).

Далее для каждой группы инфекций (МКБ) были вычислены: абсолютная заболеваемость в год, относительная заболеваемость в год, процент случаев данной группы инфекций от общего числа зарегистрированных случаев. Были выделены диагностические группы инфекций, доля которых составляет 1% и более в общей структуре заболеваемости, группы инфекций менее 1% учитывались в группе «другие» (Other Codes).

На рис. 1-2 приведены структурные диаграммы ИнЗ в Барнауле за 2008-2011 гг., отражающие основные закономерности и тенденции в изменении ИнЗ. На них представлены группы, составляющие более 1% от общей ИнЗ и группа Other Codes, при этом группы А04.8 и А04.9 (ОКИ неустановленной этиологии), А02.8 и А02.9 (сальмонеллез) объединены, как родственные.

Проведенный анализ позволяет сделать следующие выводы о структуре и динамике изменения ИнЗ в Барнауле:

- основные группы инфекций, вносящие вклад в общую структуру ИнЗ в среднем за 2008-2011 гг.: А04.8+А04.9 (66,8%), А02.8+А02.9 (7,1%), А08.0 (ротавирусный энтерит, 15,85%), А05.0 (стафилококковое пищевое отравление, 2%), причем, структура ИнЗ и вклад каждой группы инфекций отличается по годам;



 

Похожие работы:

«МИНИСТЕРСТВО ПО ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ РЕСПУБЛИКИ БЕЛАРУСЬ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «КОМАНДНО-ИНЖЕНЕРНЫЙ ИНСТИТУТ» СОГЛАСОВАНО УТВЕРЖДАЮ Начальник Первый заместитель начальника Департамента по надзору за Государственного учреждения безопасным ведением работ в образования промышленности председатель «Командно-инженерный институт» предметной комиссии на МЧС Республики Беларусь полковник внутренней службы государственном комплексном по специальности безопасность».Полевода Г.Г. Решко...»

«Муниципальное бюджетное общеобразовательное учреждение «Средняя школа № 32» Рабочая программа учебного предмета «Основы безопасности жизнедеятельности» основное общее образование 8 А,Б,В классы Рабочая программа составлена в соответствии с требованиями федерального компонента государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования Российской Федерации «Об утверждении федерального компонента государственных образовательных...»

«Негосударственное образовательное учреждение высшего профессионального образования «Камский институт гуманитарных и инженерных технологий» Факультет «Инженерные технологии» Кафедра «Инженерная экология и техносферная безопасность»Утверждаю: Ректор НОУ ВПО «КИГИТ» О. А. Дегтева 2012г. Согласовано на заседании УМС Протокол №_ от «_»2012г. УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Экология» Для направления подготовки 241000 «Энергои ресурсосберегающие процессы в химической технологии, нефтехимии...»

«Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Кафедра «Природная и техносферная безопасность» РАБОЧАЯ ПРОГРАММА по дисциплине Б.1.1.23 «Безопасность жизнедеятельности» направления 11.03.02 «Инфокоммуникационные технологии и системы связи» форма обучения – очная курс – 3 семестр – 5 зачетных единиц – 3 часов в неделю – 3 всего часов – 108, в том числе: лекции – 18, практические...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Московский государственный лингвистический университет» Евразийский лингвистический институт в г. Иркутске (филиал) «УТВЕРЖДАЮ» Директор МГЛУ ЕАЛИ доктор филологических наук, профессор А. М. Каплуненко ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ НА ПРОГРАММЫ БАКАЛАВРИАТА по дисциплине Математика Направление подготовки 10.03.01Информационная...»

«ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Физическая культура — обязательный учебный курс в общеобразовательных учреждениях. Предмет «Физическая культура» в основной школе входит в предметную область «Физическая культура и основы безопасности жизнедеятельности» и является основой физического воспитания школьников. В сочетании с другими формами обучения физкультурно-оздоровительными мероприятиями в режиме учебного дня и второй половины дня (гимнастика до занятий, физкультурные минутки, физические упражнения и игры...»

«No. 2015/175 Журнал Вторник, 15 сентября 2015 года Организации Объединенных Наций Программа заседаний и повестка дня Официальные заседания Вторник, 15 сентября 2015 года Генеральная Ассамблея Совет Безопасности Семидесятая сессия Зал Совета 10 ч. 00 м. 7521-е заседание Безопасности 1-е пленарное Зал Генеральной 15 ч. 00 м. заседание Ассамблеи [веб-трансляция] 1. Утверждение повестки дня [веб-трансляция] 1. Открытие сессии Председателем Генеральной 2. Положение на Ближнем Востоке, включая...»

«МБДОУ «Детский сад №14 «Березка» общеразвивающего вида с приоритетным осуществлением деятельности по познавательноречевому развитию воспитанников» п.г.т. Зеленоборский ЗДОРОВЫЙ ДОШКОЛЬНИК Программа оздоровления и формирования элементарных норм и правил здорового образа жизни, основ собственной безопасности воспитанников 2014 2018 «УТВЕРЖДЕНА» педагогическим советом № 2 от 14.03. 2014 года Приказом по МБДОУ № 116-ОД от 27.11. 2013 Н.М. Ломакина ЗДОРОВЫЙ ДОШКОЛЬНИК Программа оздоровления и...»

«Пояснительная записка. В современном мире опасные и чрезвычайные ситуации природного, техногенного социального характера стали объективной реальностью в процессе жизнедеятельности каждого человека. Они несут угрозу его жизни и здоровью, наносят огромный ущерб окружающей природной среде и обществу. В настоящее время вопросы обеспечения безопасности стали одной из насущных потребностей каждого человека, общества и государства. Формирование современного уровня культуры безопасности является...»

«МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДЕТСКИЙ САД КОМБИНИРОВАННОГО ВИДА № 13 «СКАЗКА» ОТЧЁТ О РЕЗУЛЬТАТАХ САМООБСЛЕДОВАНИЯ муниципального бюджетного дошкольного образовательного учреждения детский сад комбинированного вида №13 «Сказка» за 2014-2015учебный год г. Лобня 2015г. 1. комбинированного вида №13 «Сказка». детский сад №13 «Сказка»., Московская область г. Лобня, ул. Молодежная д.16 садом Каменева Наталья Юрьевна заместитель заведующего по УМР Агафонова Ю.В.,...»







 
2016 www.programma.x-pdf.ru - «Бесплатная электронная библиотека - Учебные, рабочие программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.